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Soft materials prepared from supramolecular or self-assembling (a) (b)
strategies provide researchers with a diversity of potential techno-
logical benefits. Leaving aside obvious implications for the design ’;{
of sensors and devicé8model cooperative molecular systems may 0
provide the means to unveil how noncovalent interactions in ™
complex chemical systems can lead to the emergence of adaptive
and collectivé responses to external stimuli. However, to understand ‘ air
the mechanism with which information is transferred through Y water
multiple-length scales, aiming to obtain functional responses and ) 7

redictable outputs, a theoretical description is desired. This is often
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an elusive task.
We report an experimental phenomenon of collective light-
induced reorientational processes at the air/water interface. Moreg’%%”?_l- (?)h'\/'o'ec“'fr S”U_Ctglfe Off the alzobtlenzene-basgd amphiphile and
I : efinition of the angular variables for molecules arranged at theveater
speuﬂcally, We_ de_monstrate how a cycle of Weal_( on/off Ilnear_ly interface® The projection on the monolayer plane defines the director field
polarized illumination can totally reverse the radially symmetric z (b) Scheme of the unidirectional photoswitch between the stiéey-
pattern of orientations of stretched amphiphilic molecules assembledout and unstablsplay-intextures. The original configuration is recovered
in condensed smectic-C-like droplets in a Langmuir monolayer after relaxation. Interconversion between the two configurations may also
: : — : _ be achieved through changes in the lateral pressure. Textures correspond
(Flg.ure 1)..The phqtoresponswe thin film consists of a phqto to simulated BAM images for the given azimuth distributions.
stationarycig/trans mixture of an azobenzene-based amphiphile,

which organizes itself into birefringent, circular, nearly ptrans is trivially attained after turning off the illumination (Figure 2g).
droplets of diameters up to 250m, embedded in a matrix of  Thjs state is known to slowly relax back to tplay-ou texturé
untextured isotropicis phas€’. Two distinct and highly symmetric  (Figure 2h).

textures arise from the distribution of the projected in-plane vector  The just reported observations can be interpreted within a
field @ and can be observed by polarized reflection microscopy at theoretical framework built from the interplay of two distinct
Brewster angle (BAM). At 35°C and low surface pressure dynamics. A simple relaxational (thermodynamic) principle is

splay-in

trans-8Az3-COOH

(7 < 3mNn11), the characteristic texture issplay-outstate with invoked first in relation to a free energy functional, adapted to the
molecules stretching their tails outward, relative to the droplet labile nature of the softly condensed domains and incorporating
boundary. At higher lateral pressuresX 10 mNnt?) the stretching long-range elastic forces. Coupled to this we consider two molecular
of the molecular tails is inward, resulting insplay-inconfigura- direction-dependent reactions leading to a (kinetic) formalism with

tion.2 We show how the unidirectional transition between these two an anisotropic rate law, since polarized illumination is most effective
self-organized mesoscopic textures is photoinduced through afor those molecules parallel to the E-fiéldrirst, light absorption
complex dynamics. The whole transition pathway described in the leads to a short-lived excited electronic state of the chromophore
experiments, including transient patterns, is quantitatively explained with rotational mobility enhancemeéfithat eventually would result
with the aid of a theoretical model. in a collective photomigration process of the molecular long axis
A typical photoswitch experiment ofsplay-outdomain (Figure out of the incident light (photoreorientatioH).1 Second we invoke
2a), with the E-field horizontally polarized for simplicity, proceeds —a slower alternative reaction of the chromophores which has to be
as follows. Within seconds of illumination, molecular alignment capable of intervening in the collective alignment. All the experi-
parallel to E starts at the center of the droplet and extends mental results point to a light-induced anisotropic extension of the
progressively outward (Figure 2b). After some collectively orga- H-aggregatioff of the chromophore, thus reducing the molecular
nized transient states (Figure-2e), lasting about 10 s for the range  Mobility, owing both to electronic and elastic reasons.
of power densities in our experiments, the whole droplet is These arguments, in their most simple form, are translated into
organized in two north/south semicircles of nearly perpendicular & model with two spatio/temporal-dependent state variables. The
orientation to the polarization direction but, strikingly, with condensed SmC state of the droplets is described by means of a
molecular tails pointing inward (Figure 2f). The complete reversal free-energy written in terms of the local distribution of molecular
of the initial texture to the radially symmetriplay-inconfiguration ~ orientations ¢ (xy;t) for the azimuth variable) and the composition
variablec(x,y;t), denoting the molecular fraction of nonaggregated

T Current address: Departament d€Qiga Orgaica, Universitat de Barcelona, trans_lsor_ners: Tal_<|ng for S|mpI|c!ty th_e 0r|g|r_1 of aZImUt_hS ?S the
Marti i Franqus 1, 08028-Barcelona, Catalonia, Spain. polarization direction and assuming simple first-order kinetic laws
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Figure 2. Photoswitch experiment ofsplay-outdroplet into thesplay-intexture. The E-field is horizontally polarized. The bar on panel (a) isi@0ong.

Irradiation is switched off on panel f after 13s. The texture beconsgsagy-in8 s afterward (panel g) and fully relaxes to the origisplay-outtexture after

170 s (panel h). Lateral pressure is 0.5 mN/m. Drawings on the lower row correspond to the results of the numerical experiment. The parameters are
Ky, = 0.8,5 = 4,1 = 200,k; = 50, ko = 500, in the unit systeriks = R (droplet radiusy= y = 1. When the light is switched of; = 0.
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